RSSSSSACrypto 未解决
分数:
20
金币:
2
题目作者:
树木有点绿
一 血:
volcano
一血奖励:
3金币
解 决:
1069
提 示:
描 述:
这是一个非常简单的RSA
其 他:
RSSSSSA.txt
评分(6)
解题动态
20230302224 攻破了该题 1小时前
zfl 攻破了该题 23小时前
20230302235 攻破了该题 1天前
20230302140 攻破了该题 1天前
KDB 攻破了该题 1天前
20230302203 攻破了该题 2天前
王八蛋 攻破了该题 4天前
Alune 攻破了该题 6天前
你不懂的吧 攻破了该题 9天前
zhaowenxin 攻破了该题 9天前
20230302227 攻破了该题 9天前
淋༲ 攻破了该题 9天前
20230302201 攻破了该题 9天前
19164055614 攻破了该题 10天前
Sun.@z 攻破了该题 11天前
传说中的小菜鸟 攻破了该题 11天前
20230302231 攻破了该题 11天前
20230302229 攻破了该题 12天前
伊伊意义 攻破了该题 12天前
评论
Alune 5天前
举报
俺的脚本很简单,便于理解https://blog.csdn.net/2301_80675009/article/details/156489037?sharetype=blogdetail&sharerId=156489037&sharerefer=PC&sharesource=2301_80675009&spm=1011.2480.3001.8118
Alune 6天前
举报
终于靠自己写出了脚本!
1nfinix 23天前
举报
flag{*****}
韭菜叶花肉来个茶蛋 4月前
举报
deepseek 低指数rsa广播攻击脚本。哎,根本不会
NosajUx 5月前
举报
若同一明文 m 用相同 e 加密到不同 \(n_1, n_2, ..., n_k\),得到密文 \(c_1, c_2, ..., c_k\),则可通过 CRT 计算:\(m^e \equiv CRT(c_1, c_2, ..., c_k) \mod (n_1 \times n_2 \times ... \times n_k)\)开 e 次方得到 m。
NosajUx 5月前
举报
用中国剩余定理的思路: 先找满足 “除以 3 余 2、除以 7 余 2” 的数:因为除以 3 和 7 都余 2,所以这个数减去 2 后是 3 和 7 的公倍数(如 21、42、63...),因此可能的数是 23、44、65... 再从这些数中找 “除以 5 余 3” 的:23 除以 5 余 3,正好满足。 所以答案就是 23。
NosajUx 5月前
举报
中国剩余定理是一种古老的数学方法,主要用于解决多个整数除法中 “余数” 的问题,简单来说,就是当知道一个数除以不同除数的余数时,能算出这个数最小是多少(或所有可能的解)。 举个经典例子: “有一堆苹果,3 个 3 个分剩 2 个,5 个 5 个分剩 3 个,7 个 7 个分剩 2 个,这堆苹果最少有多少个?”
NosajUx 5月前
举报
此时,通过 CRT 可求出 \(M \equiv m^e \mod (n_1 \times n_2 \times ... \times n_k)\),若 \(M < (n_1 \times ... \times n_k)\),则 \(M = m^e\),对 M 开 e 次方根即可得到明文 m。
NosajUx 5月前
举报
核心背景:RSA 广播攻击当满足以下条件时,可通过中国剩余定理(CRT)恢复明文:同一明文 m 用相同的公钥指数 e 加密。加密使用不同的模数 \(n_1, n_2, ..., n_k\)(且模数互质)。加密后的密文为 \(c_1, c_2, ..., c_k\),满足 \(c_i \equiv m^e \mod n_i\)。
17630080330 7月前
举报
中国剩余定理